Multi–GeV Plasma Wakefield Acceleration Experiments

Rasmus Ischebeck, for the E–167 collaboration

Plasma wakefield acceleration

Existing experimental apparatus

Proposed next experiments: E–167
- Physical goals
- Improvements to the apparatus
Evolution of Electron Accelerators
(Livingston Plot)

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Basic Requirements for Electron Accelerators beyond ILC

- Energy \(W \gtrsim 5 \text{ TeV} \) \(W = E \cdot e \cdot L \) \(\text{(Linac)} \)

- Luminosity \(\mathcal{L} \gtrsim 10^{35} \text{ cm}^{-2} \text{ s}^{-1} \)

\[\mathcal{L} = \frac{I^2}{4 \pi f \sigma_x \sigma_y} \]

⇒ Beam power \(P \approx 100 \text{ MW} \)

- Cost \(C \lesssim 5 \cdot 10^9 \)

- High accelerating fields
- Low emittance (small diameter)
- High bunch charge
- Good efficiency

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Multi–GeV Plasma Wakefield Acceleration Experiments

Rasmus Ischebeck, for the E–167 collaboration

Plasma wakefield acceleration

Existing experimental apparatus

Proposed next experiments: E–167

• Physical goals
• Improvements to the apparatus
Plasma Waves

- Plasma wavelength:
 \[\lambda_p \approx \sqrt{\frac{10^{15} \text{cm}^{-3}}{n_p}} \text{ mm} \]

- Wave breaking field: maximum field achievable in a plasma, occurring when the electron density becomes singular

- As calculated from non-relativistic one-dimensional theory:
 \[E_0 = \frac{4\pi \varepsilon_0 c m_e}{e} \omega_p \]
 or, as a function of the plasma density
 \[E_0 \approx \sqrt{\frac{n_p}{\text{cm}^{-3}}} \frac{\text{V}}{\text{cm}} \]

- In our case, \(n_p \approx 10^{17} \text{ cm}^{-3} \) \(\implies \) \(E_0 \approx 30 \text{ GV/m} \)
Plasma acceleration

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Scaling Laws (Linear Theory)

- Electric field at a distance ζ behind the bunch

$$\vec{E} = \frac{eN_b}{2\pi\varepsilon_0} k_p^2 e^{-\frac{k_p^2 \sigma_z^2}{2}} \sin(k_p \zeta) \quad \text{where} \quad k_p = \sqrt{n_p e^2 / (4\pi\varepsilon_0^2 m_e c^2)}$$

- Match bunch length to the plasma wavelength
(maximize the longitudinal electric field for a given bunch length)

$$k_p = \frac{\sqrt{2}}{\sigma_z} \quad \Leftrightarrow \quad n_p = \frac{m_e c^2}{2\pi e^2 \sigma_z^2}$$

$$\Rightarrow \quad \vec{E} = \frac{eN_b}{\pi\varepsilon_0 \sigma_z^2} e^{-1} \sin(k_p \zeta)$$

$$\text{or} \quad \vec{E}_{\text{max}} \approx 100 \left(\frac{N_b}{2 \cdot 10^{10}} \right) \left(\frac{20 \mu m}{\sigma_z} \right)^2 \frac{\text{GV}}{\text{m}}$$

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Plasma Acceleration (E–164X)

Rasmus Ischebeck, Multi–GeV Plasma Wakefield Acceleration Experiments

Courtesy Mark Hogan
Multi–GeV Plasma Wakefield Acceleration Experiments

Rasmus Ischebeck, for the E–167 collaboration

Plasma wakefield acceleration

Existing experimental apparatus

Proposed next experiments: E–167
- Physical goals
- Improvements to the apparatus
Existing experimental apparatus

Rasmus Ischebeck, Multi–GeV Plasma Wakefield Acceleration Experiments
Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments

Particle tracking in 2D...

- Energy profile
 - 0.08% at 1.19 GeV
 - 1.2% at 1.19 GeV
 - 1.1% at 1.2 mm
 - 1.6% at 1.2 mm
 - 1.6% at 1.2 mm
 - 1.5% at 1.5%
Lithium Oven

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Field Ionization of the Lithium Vapor

For lower beam density the ionization threshold occurs later in the bunch.

For higher beam density the ionization threshold occurs earlier in the bunch.

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments

Courtesy Caolionn O'Connell
Existing Diagnostics

- e- beam from SLAC linear accelerator
- e- spectrum X-ray based spectrometer
- e- spatial distribution optical transition radiation (OTR)
- e- spatial distribution optical transition radiation (OTR)
- positron production from betatron X-rays
- e- spectrum imaging spectrometer
- e- bunch length autocorrelation of coherent transition radiation (CTR)
- plasma light spectrum grid spectrometer
- plasma oven

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Existing Diagnostics

- e- spectrum
- X-ray based spectrometer
- e- beam from SLAC linear accelerator
- e- beam length autocorrelation of coherent transition radiation (CTR)
- e- spectrum imaging spectrometer
- e- spatial distribution optical transition radiation (OTR)

- positron production from betatron X-rays
- plasma light spectrum grid spectrometer
- plasma oven

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Multi–GeV Plasma Wakefield Acceleration Experiments

Rasmus Ischebeck, for the E–167 collaboration

Plasma wakefield acceleration

Existing experimental apparatus

Proposed next experiments: E–167
- Physical goals
- Improvements to the apparatus
Proposed Next Experiments: E–167

- Address issues important for a useful accelerator

 Variation of oven length & plasma density
 Hose instabilities

 Trapped particles

 Bunch shaping
 Twin bunch

Rasmus Ischebeck, Multi–GeV Plasma Wakefield Acceleration Experiments
Improvements to the Apparatus

- Plasma oven with variable length
- Detection of accelerated ions with a fast beam current transformer
- Improvements to diagnostics
 - Positron source from betatron x-rays
 - Plasma light spectrometer
 - Electron bunch shape (OTR)
 - Electron bunch length (CTR autocorrelator)
- Time-resolved measurements of the plasma light spectrum and of OTR
- Twin bunch scheme
Increased Energy Reach

- Variable length oven: 10 – 30 cm
- Oven is removable
- Increased energy aperture
- Larger phosphor for spectrometer
Beam tilt and hose instability effects

- A transverse tilt in the electron beam can be amplified by the plasma wake
- Limits the applicability of plasma wakefield accelerators?

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Detection of Trapped Particles

- Downstream charge as a function of bunch length
- Fast beam current transformer will be installed downstream of the plasma
Positron Source from Betatron X–Rays

Improvements to the apparatus:
• detect electrons and positrons simultaneously
• install a new pole piece for the magnet
• improve the shielding

Rasmus Ischebeck, Multi–GeV Plasma Wakefield Acceleration Experiments
Improvements to the Experimental Apparatus

- Optical transition radiation (OTR)
 - increased resolution
 - shielding from Čerenkov light
 - time–resolved measurements
 - measurements in the middle of the chicane
- Plasma light spectrometer
 - increased resolution
 - time–resolved measurement
Bunch Length Measurement

• Using coherent transition radiation (CTR)

• For a bunch length \(\approx \lambda \) the emission is coherent
 \(\Rightarrow \) the pulse energy is increased by a factor \(N_b \)
Coherent Transition Radiation of a Gaussian Beam

\[\frac{dW}{d\Omega d\nu} = \frac{N_b^2 e^2}{4 \pi^3 \varepsilon_0 c (1 - \beta^2 \cos^2 \vartheta)^2} \exp \left(-\frac{\nu^2}{4 \pi^2 c^2 \beta^2} (\sigma_z^2 + \beta^2 \sigma_r^2 \sin(\vartheta^2)) \right) \]

Considering:

- the finite size of the foil
- near field diffraction of the radiation and the imaging by the mirror
- absorption in the vacuum window and air
- spectral sensitivity of the detector

and integrating over solid angle and frequency yields:

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Bunch Length Measurement

- Existing autocorrelator

\[\sigma_z = 9 \, \mu m \]
Single-Bunch Autocorrelator

- Mach–Zehnder geometry
- Use a segmented FIR detector
Twin Bunch Scheme

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Twin Bunch Scheme
Simulations

- Energy loss by bremsstrahlung
- Beam dynamics

Development in the chicane

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Twin Bunch Scheme

Simulations

- Energy loss by bremsstrahlung
- Beam dynamics

- Development in the following linac sections

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Twin Bunch Scheme

Resulting Current Distribution

phase space

current distribution

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Twin Bunch Scheme

Experimental Considerations

- Material and thickness of absorber
- Compression process
- Particle loss simulations
- Installation in the linac
Summary

- Existing experimental setup includes state-of-the-art beam diagnostics:
 - Non-invasive energy spectrum
 - Sub-picosecond bunch length

- Experimental results:
 - Acceleration of 3 GeV in a 10 cm plasma

- E-167 will allow to:
 - Reach higher energies and address hose instability issues
 - Analyze trapped particles
 - Accelerate separate bunches

- Pave the road towards a useful plasma wakefield accelerator

Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Rasmus Ischebeck, Multi-GeV Plasma Wakefield Acceleration Experiments
Presented by the E–167 Team

Stanford Linear Accelerator Center

University of California, Los Angeles

S. Deng, B. Feng, T. Katsouleas, P. Muggli* and E. Oz
University of Southern California

Thanks to C. Barnes, I. Blumenfeld, C. O’Connell, N. Kirby, M. Lincoln, Z. Spyridakis
Stanford University

Rasmus Ischebeck, Multi–GeV Plasma Wakefield Acceleration Experiments
This talk is available at http://www.slac.stanford.edu/~rasmus