A Transverse Profile Imager for Ionizing Radiation

Rasmus Ischebeck ${ }^{1}$, Bolko Beutner ${ }^{1}$, Eduard Prat ${ }^{1}$, Volker Schlott ${ }^{1}$, Vincent Thominet ${ }^{1}$, Minjie Yan ${ }^{2}$ ${ }^{1}$ Paul Scherrer Institut, ${ }^{2}$ Deutsches Elektronen-Synchrotron

Imaging of Scintillating Crystals

Energy deposited in a scintillating crystal leads to the emission of light, which is then imaged onto an image sensor such as a CCD or CMOS sensor.

The primary beam produces a uniformly radiating slab of length $d \cos \alpha$, which is observed at a distance much larger than d, under an angle β to the normal. We assume an index of refraction n in the crystal, surrounded by vacuum. Because of refraction on the surface of the crystal, the observer sees a virtual image of this slab, shown by a dashed line.

From the Snell-Descartes law of refraction (actually first described by Ibn Sahl: On Burning Mirrors and Lenses (984)), and from basic trigonometry..
$\frac{\sin \beta}{n}=\sin \beta^{\prime}$
$\ell:=\overline{A B}=\frac{d}{\cos \beta^{\prime}}$
$s^{\prime}:=\overline{B C}=\frac{s}{\cos \beta}$
$s^{\prime 2}=\ell^{2}+\left(\frac{d}{\cos \alpha}\right)^{2}-2 \ell \frac{d}{\cos \alpha} \cos \left(\alpha+\beta^{\prime}\right)$
..one can derive an expression for the apparent transverse beam size s:
$s=d \cos \beta \cdot \sqrt{\frac{1}{1-\frac{\sin ^{2} \beta}{n^{2}}}+\frac{1}{\cos ^{2} \alpha}-2 \frac{\cos \left(\arcsin \left(\frac{\sin \beta}{n}\right)+\alpha\right)}{\sqrt{1-\frac{\sin ^{2} \beta}{n^{2}}} \cos \alpha}}$
One can easily convince oneself that there is an observation angle $\beta_{\text {ideal }}$ where $s=0$:

$$
\beta_{\text {ideal }}=-\arcsin (n \sin \alpha)
$$

From this measurement, $\varepsilon_{x}=172 \mathrm{~nm}$ and $\varepsilon_{\mathrm{y}}=336 \mathrm{~nm}$.

Streaking the beam with an RF deflector allows to measure the slice emittance of 10 pC bunches.
For the present measurement, the bunch compressor was off.

